Injective Envelopes of C∗-algebras as Operator Modules

نویسندگان

  • Michael Frank
  • Vern I. Paulsen
  • V. I. PAULSEN
چکیده

In this paper we give some characterizations of M. Hamana’s injective envelope I(A) of a C∗-algebra A in the setting of operator spaces and completely bounded maps. These characterizations lead to simplifications and generalizations of some known results concerning completely bounded projections onto C∗-algebras. We prove that I(A) is rigid for completely bounded A-module maps. This rigidity yields a natural representation of many kinds of multipliers as multiplications by elements of I(A). In particular, we prove that the(n times iterated) local multiplier algebra of A embeds into I(A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injective Envelopes of Separable C * -algebras

Characterisations of those separable C∗-algebras that have type I injective envelopes or W∗-algebra injective envelopes are presented. An operator system I is injective if for every inclusion E ⊂ F of operator systems each completely positive linear map ω : E → I has a completely positive extension to F . An injective envelope of an operator system E is an injective operator system I such that ...

متن کامل

ar X iv : m at h / 01 06 13 1 v 1 [ m at h . O A ] 1 5 Ju n 20 01 INJECTIVE ENVELOPES OF C ∗ - ALGEBRAS AS OPERATOR MODULES

In this paper we give some characterizations of M. Hamana’s injective envelope I(A) of a C∗-algebra A in the setting of operator spaces and completely bounded maps. These characterizations lead to simplifications and generalizations of some known results concerning completely bounded projections onto C∗-algebras. We prove that I(A) is rigid for completely bounded A-module maps. This rigidity yi...

متن کامل

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

Injective Envelopes and Local Multiplier Algebras of C*-algebras

The local multiplier C*-algebra Mloc(A) of any C*-algebra A can be ∗-isomorphicly embedded into the injective envelope I(A) of A in such a way that the canonical embeddings of A into both these C*-algebras are identified. If A is commutative then Mloc(A) ≡ I(A). The injective envelopes of A and Mloc(A) always coincide, and every higher order local multiplier C*-algebra of A is contained in the ...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003